Skip to main content
Log in

Suppression of the Temperature Dependence in Measurements of Superposition States of the Nucleus Spin at the Nitrogen-Vacancy Center in Diamond

  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

Nitrogen-vacancy color centers in diamond can be used to measure rotation. However, the rotation readout algorithm known to date is sensitive to the in-phase shift of nuclear transition frequencies caused by diamond temperature change. In this paper, an algorithm of pulsed detection of the phase accumulated by a superposition state in which the signal of in-phase frequency shift of the transition frequency is suppressed, thus the effect of the temperature dependence of quadrupole splitting on rotation rate measurements is suppressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

REFERENCES

  1. Wolf, T., Neumann, P., Nakamura, K., Sumiya, H., Ohshima, T., Isoya, J., and Wrachtrup, J., Subpicotesla diamond magnetometry, Phys. Rev. X, 2015, vol. 5, no. 4, p. 041001. https://doi.org/10.1103/PhysRevX.5.041001

  2. Taylor, J.M., Cappellaro, P., Childress, L., Jiang, L., Budker, D., Hemmer, P.R., Yacoby, A., Walsworth, R., and Lukin, M.D., High-sensitivity diamond magnetometer with nanoscale resolution, Nat. Phys., 2008, vol. 4, no. 10, pp. 810–816. https://doi.org/10.1038/nphys1075

    Article  Google Scholar 

  3. Clevenson, H., Trusheim, M.E., Teale, C., Schröder, T., Braje, D., and Englund, D., Broadband magnetometry and temperature sensing with a light-trapping diamond waveguide, Nat. Phys., 2015, vol. 11, pp. 393–397. https://doi.org/10.1038/NPHYS3291

    Article  Google Scholar 

  4. Kucsko, G., Maurer, P.C., Yao, N.Y., Kubo, M., Noh, H.J., Lo, P.K., Park, H., and Lukin, M.D., Nanometre-scale thermometry in a living cell, Nature, 2013, vol. 500, no. 7460, pp. 54–58. https://doi.org/10.1038/nature12373

    Article  ADS  Google Scholar 

  5. Fedotov, I.V., Safronov, N.A., Ermakova, Yu.G., Matlashov, M.E., Sidorov-Biryukov, D.A., Fedotov, A.B., Belousov, V.V., and Zheltikov, A.M., Fiber-optic control and thermometry of single-cell thermosensation logic, Sci. Rep., 2015, vol. 5, no. 1, p. 15737. https://doi.org/10.1038/srep15737

    Article  ADS  Google Scholar 

  6. Lanin, A.A., Fedotov, I.V., Ermakova, Yu.G., Sidorov-Biryukov, D.A., Fedotov, A.B., Hemmer, P., Belousov, V.V., and Zheltikov, A.M., Fiber-optic electron-spin-resonance thermometry of single laser-activated neurons, Opt. Lett., 2016, vol. 41, no. 23, p. 5563. https://doi.org/10.1364/OL.41.005563

    Article  ADS  Google Scholar 

  7. Dolde, F., Fedder, H., Doherty, M.W., Nöbauer, T., Rempp, F., Balasubramanian, G., Wolf, T., Reinhard, F., Hollenberg, L.C.L., Jelezko, F., and Wrachtrup, J., Electric-field sensing using single diamond spins, Nat. Phys., 2011, vol. 7, no. 6, pp. 459–463. https://doi.org/10.1038/nphys1969

    Article  Google Scholar 

  8. Ajoy, A. and Cappellaro, P., Stable three-axis nuclear spin gyroscope in diamond, Phys Rev A, 2012, vol. 86, no. 6, 062104. https://doi.org/10.1103/PhysRevA.86.062104

  9. Jarmola, A., Lourette, S., Acosta, V.M., Birdwell, A.G., Blümler, P., Bodker, D., Ivanov, T., and Malinovsky, V.S., Demonstration of diamond nuclear spin gyroscope, Sci. Adv., 2021, vol. 7, no. 43, pp. 3840–3862. https://doi.org/10.1126/SCIADV.ABL3840

    Article  ADS  Google Scholar 

  10. Soshenko, V.V., Bolshedvorskii, S.V., Rubinas, O., Sorokin, V.N., Smolyaninov, A.N., Vorobyov, V., and Akimov, V., Nuclear spin gyroscope based on the nitrogen vacancy center in diamond, Phys. Rev. Lett., 2021, vol. 126, no. 19, p. 197702. https://doi.org/10.1103/PHYSREVLETT.126.197702

  11. Santarelli, G., Laurent, Ph., Lemonde, P., Clairon, A., Mann, A.G., Chang, S., Luiten, A.N., and Salomon, C., Quantum projection noise in an atomic fountain: A high stability cesium frequency standard, Phys. Rev. Lett., 1999, vol. 82, no. 23, p. 4619. https://doi.org/10.1103/PhysRevLett.82.4619

    Article  ADS  Google Scholar 

  12. Fang, K., Acosta, V.M., Santori, C., Huang, Z., Itoh, K.M., Watanabe, H., Shikata, S., and Beausoleil, R.G., High-sensitivity magnetometry based on quantum beats in diamond nitrogen-vacancy centers, Phys. Rev. Lett., 2013, vol. 110, no. 13, p. 130802. https://doi.org/10.1103/PhysRevLett.110.130802

  13. Soshenko, V.V., Vorobyov, V.V., Bolshedvorskii, S.V., Rubinas, O., Cojocaru, I., Kudlatsky, B., Zeleneev, A.I., Sorokin, V.N., Smolyaninov, A.N., and Akimov, A.V., Temperature drift rate for nuclear terms of the NV-center ground-state Hamiltonian, Phys. Rev. B, 2020, vol. 102, no. 12, p. 125133. https://doi.org/10.1103/PhysRevB.102.125133

  14. Hart, C.A., Schloss, J.M., Turner, M.J., Scheidegger, P.J., Bauch, E., and Walsworth, R.L., NV-diamond magnetic microscopy using a double quantum 4-Ramsey protocol, Phys. Rev. Appl., 2021, vol. 15, no. 4, p. 044020. https://doi.org/10.1103/PHYSREVAPPLIED.15.044020

Download references

Funding

This study was supported by the Russian Science Foundation, project no. 21-42-04407.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Soshenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Kazantsev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soshenko, V.V., Cojocaru, I.S., Kozodaev, A.M. et al. Suppression of the Temperature Dependence in Measurements of Superposition States of the Nucleus Spin at the Nitrogen-Vacancy Center in Diamond. Bull. Lebedev Phys. Inst. 50, 30–33 (2023). https://doi.org/10.3103/S1068335623010086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335623010086

Keywords:

Navigation